Cobra ( Naja spp. ) nicotinic acetylcholine receptor exhibits resistance to Erabu sea snake ( Laticauda semifasciata) short-chain alpha-neurotoxin.
نویسندگان
چکیده
Snake alpha-neutotoxins of Elapidae venoms are grouped into two structural classes, short-chain and long-chain alpha-neutotoxins. While these two classes share many chemical and biological characteristics, there are also distinct dissimilarities between them, including their binding site on the nicotinic acetylcholine receptor (nAChR), specificity among species of Chordata, and the associated pharmacological effects. In the present study we test the hypothesis that structural motifs that evolved to confer natural resistance against conspecific long-chain alpha-neurotoxins in Elapidae snakes also interfere with the biological action of short-chain alpha-neurotoxins. We expressed functional nAChRs that contains segments or single residues of the Elapidae nAChR ligand binding domain and tested the effect of short-chain alpha-neurotoxin erabutoxin-a (ETX-a) from the Erabu sea snake Laticauda semifasciata on the acetylcholine-induced currents as measured by two-microelectrode voltage clamp. Our results show that the Elapidae nAChR alpha subunit segment T(154)-L(208) ligand binding domain has an inhibitory effect on the pharmacological action of ETX-a. This effect is primarily attributed to the presence of glycosylation at position N(189). If the glycosylation is removed from the T(154)-L(208) segment, the nAChR will be inhibited, however, to a lesser extent than seen in the mouse. This effect correlates with the variations in alpha-neurotoxin sensitivity of different species and, importantly, reflects the evolutionary conservation of the binding site on the nAChR polypeptide backbone per se. Phylogenetic analysis of alpha-neurotoxin resistance suggests that alpha-neurotoxin-resistant nAChR evolved first, which permitted the evolution of snake venom alpha-neurotoxins. A model describing alpha-neurotoxin resistance in Elapidae snakes is presented.
منابع مشابه
Studies on sea snake venom
Erabutoxins a and b are neurotoxins isolated from venom of a sea snake Laticauda semifasciata (erabu-umihebi). Amino acid sequences of the toxins indicated that the toxins are members of a superfamily consisting of short and long neurotoxins and cytotoxins found in sea snakes and terrestrial snakes. The short neurotoxins to which erabutoxins belong act by blocking the nicotinic acetylcholine re...
متن کاملTitle Studies on sea snake venom
Erabutoxins a and b are neurotoxins isolated from venom of a sea snake Laticauda semifasciata (erabu-umihebi). Amino acid sequences of the toxins indicated that the toxins are members of a superfamily consisting of short and long neurotoxins and cytotoxins found in sea snakes and terrestrial snakes. The short neurotoxins to which erabutoxins belong act by blocking the nicotinic acetylcholine re...
متن کاملReview Studies on sea snake venom
Erabutoxins a and b are neurotoxins isolated from venom of a sea snake Laticauda semifasciata (erabu-umihebi). Amino acid sequences of the toxins indicated that the toxins are members of a superfamily consisting of short and long neurotoxins and cytotoxins found in sea snakes and terrestrial snakes. The short neurotoxins to which erabutoxins belong act by blocking the nicotinic acetylcholine re...
متن کاملSnake alpha-neurotoxin binding site on the Egyptian cobra (Naja haje) nicotinic acetylcholine receptor Is conserved.
Evolutionary success requires that animal venoms are targeted against phylogenetically conserved molecular structures of fundamental physiological processes. Species producing venoms must be resistant to their action. Venoms of Elapidae snakes (e.g., cobras, kraits) contain alpha-neurotoxins, represented by alpha-bungarotoxin (alpha-BTX) targeted against the nicotinic acetylcholine receptor (nA...
متن کاملA model for short alpha-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica.
Short- and long-chain alpha-neurotoxins from snake venoms are potent blockers of nicotinic acetylcholine receptors (nAChRs). Short alpha-neurotoxins consist of 60-62 amino acid residues and include 4 disulfide bridges, whereas long alpha-neurotoxins have 66-75 residues and 5 disulfides. The spatial structure of these toxins is built by three loops, I-III "fingers," confined by four disulfide br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular evolution
دوره 58 5 شماره
صفحات -
تاریخ انتشار 2004